The STING pathway targeting technologies market is projected to grow at an annualized rate of ~25%, till 2030


Posted January 8, 2021 by kevinKD123-123_123

The pipeline features candidates targeting different therapeutic areas and designed for administration through a variety of routes; majority of such therapeutics are being developed as third-line and second-line treatments
 
Roots Analysis has done a detailed study on STING Pathway targeting therapeutics and Technologies, 2020-2030, covering key aspects of the industry and identifying future growth opportunities.

To order this 310+ page report, which features 150+ figures and 200+ tables, please visit this link

Key Market Insights
 Many small / macro molecule-based STING pathway modulators are currently being evaluated as monotherapies as well as in combination with other drugs
 The pipeline features candidates targeting different therapeutic areas and designed for administration through a variety of routes; majority of such therapeutics are being developed as third-line and second-line treatments
 In recent years, several well funded start-ups have entered this field of research, and are gradually developing proprietary products based on the STING pathway for the treatment of a variety of indications
 In addition, a number of big pharmaceutical players have also partnered with developers focused on STING targeting molecules in order to expand their respective capabilities in this upcoming field of pharmacology
 Published scientific literature indicates that both industry and academic players have made equal contributions to the innovation in this field; the major focus of such studies is presently on anti-cancer therapeutics
 Several non-profit organizations have extended financial support to aid research efforts in this domain; the current focus appears to be on drug development and disease modelling studies
 Foreseeing a lucrative future, private and public investors have invested capital worth over USD 2.5 billion, across more than 80 instances, in companies involved in STING pathway research
 The rising interest is also reflected in recent partnership activity, involving the active participation of both international and indigenous companies; majority of the deals have been focused on novel technology platforms
 Multiple companies are developing novel technology platforms for enhancing the research and development of STING pathway targeting therapeutics
 Technology developers are expected to continue relying on licensing agreements involving different STING modulators as their primary source of revenues in the foreseen future

For more information, please visit https://www.rootsanalysis.com/reports/sting-pathway-targeting-therapeutics-and-technologies-market.html

Table of Contents

1. PREFACE
1.1. Scope of the Report
1.2. Research Methodology
1.3. Key Questions Answered
1.4. Chapter Outlines

2. EXECUTIVE SUMMARY

3. INTRODUCTION
3.1. Stimulator of Interferon Genes (STING) Pathway
3.2. STING Signaling
3.2.1. Relevance in Cancer
3.2.2. Relevance in Autoimmune Diseases
3.2.3. Relevance in Antimicrobial Host Defense

3.3. STING Pathway Modulators
3.3.1. STING Agonists
3.3.2. STING Antagonists
3.3.3. STING Activating Drug Delivery Systems
3.3.4. Indirect STING Activating Therapies
3.4. Key Variants of STING
3.5. Non-immunological Functions of the STING Pathway
3.6. Concluding Remarks

4. STING PATHWAY TARGETING THERAPEUTICS: CURRENT MARKET LANDSCAPE
4.1. Chapter Overview
4.2. STING Pathway Targeting Therapeutics: Development Pipeline
4.2.1. Analysis by Type of STING Modulator
4.2.2. Analysis by Type of Molecule
4.2.3. Analysis by Phase of Development
4.2.4. Analysis by Therapeutic Area
4.2.5. Analysis by Type of Therapy
4.2.6. Analysis by Route of Administration
4.2.7. Analysis by Line of Treatment

4.3. STING Pathway Targeting Therapeutics: Developer Landscape
4.3.1. Analysis by Year of Establishment
4.3.2. Analysis by Company Size
4.3.3. Analysis by Geography
4.3.4. Most Active Players

4.4. STING Pathway Targeting Therapeutics: List of Clinical Trials
4.4.1. Analysis by Trial Recruitment Status
4.4.2. Analysis by Study Design
4.4.3. Analysis by Key Clinical Endpoints

5. STING PATHWAY TARGETING TECHNOLOGIES: CURRENT MARKET LANDSCAPE
5.1. Chapter Overview
5.2. STING Pathway Targeting Technologies: List of Technology Developers
5.2.1. Analysis by Type of Modulator
5.2.2. Analysis by Type of Molecule
5.2.3. Analysis by Year of Establishment
5.2.4. Analysis by Company Size
5.2.5. Analysis by Geography

6. COMPANY PROFILES
6.1. Chapter Overview
6.2 STING Agonist Developers
6.2.1. Aduro Biotech
6.2.1.1. Company Overview
6.2.1.2. Financial Information
6.2.1.3. Product Description: ADU-S100 (MIW815)
6.2.1.4. Recent Developments and Future Outlook

6.2.2. Bristol-Myers Squibb
6.2.2.1. Company Overview
6.2.2.2. Financial Information
6.2.2.3. Product Description: BMS-986301
6.2.2.4. Recent Developments and Future Outlook

6.2.3. Eisai
6.2.3.1. Company Overview
6.2.3.2. Financial Information
6.2.3.3. Product Description: E7766
6.2.3.4. Recent Developments and Future Outlook

6.2.4 GlaxoSmithKline
6.2.4.1. Company Overview
6.2.4.2. Financial Information
6.2.4.3. Product Description: GSK3745417
6.2.4.4. Recent Developments and Future Outlook

6.2.5. ImmuneSensor Therapeutics
6.2.5.1. Company Overview
6.2.5.2. Product Description: IMSA101

6.2.6. Merck
6.2.6.1. Company Overview
6.2.6.2. Financial Information
6.2.6.3. Product Description: MK-1454 and MK-2118
6.2.6.4. Recent Developments and Future Outlook

6.2.7. Noxopharm
6.2.7.1. Company Overview
6.2.7.2. Product Description: NOX66
6.2.7.3. Recent Developments and Future Outlook

6.2.8. Spring Bank Pharmaceuticals
6.2.8.1. Company Overview
6.2.8.2. Financial Information
6.2.8.3. Product Description: SB 11285
6.2.8.4. Recent Developments and Future Outlook

6.2.9. Synlogic
6.2.9.1. Company Overview
6.2.9.2. Financial Information
6.2.9.3. Product Description: SYNB1891
6.2.9.4. Recent Developments and Future Outlook

6.3. STING Antagonist Developers
6.3.1 Avammune Therapeutics
6.3.2. Curadev
6.3.3 ImmuneSensor Therapeutics
6.3.4. Nimbus Therapeutics
6.3.5. Sirenas
6.3.6. Spring Bank Pharmaceuticals
6.3.7. STINGINN
6.3.8. STipe Therapeutics

7 ACADEMIC GRANT ANALYSIS
7.1. Chapter Overview
7.2. Scope and Methodology
7.3. STING Pathway Targeting Therapeutics: List of Academic Grants
7.3.1. Analysis by Number of Grants
7.3.2. Analysis by Amount Awarded
7.3.3. Analysis by Funding Institute
7.3.4. Analysis by Support Period
7.3.5. Analysis by Funding Mechanism
7.3.6. Analysis by Type of Grant Application
7.3.7. Analysis by Grant Activity Code
7.3.8. Analysis by Funding Institutes
7.3.9. Analysis by Type of Recipient Organization
7.3.10 Regional Distribution of Grant Recipients
7.3.11 Most Popular Recipient Organizations: Analysis by Number of Grants and Amount Invested
7.3.12. Prominent Project Leaders: Analysis by Number of Grants
7.3.13 Analysis by Support Year and Amount Awarded
7.3.14. Analysis by Study Section
7.4. Grant Attractiveness Analysis

8 STING RELATED INITIATIVES OF BIG PHARMACEUTICALS PLAYERS
8.1. Chapter Overview
8.2. Scope and Methodology
8.3. Initiatives Undertaken by Big Pharma Players
8.3.1. Analysis by Portfolio Diversity
8.3.2. Analysis by Type of Molecule
8.3.3. Analysis by Phase of Development
8.3.4. Analysis by Therapeutic Area
8.3.5. Analysis by Type of Therapy
8.3.6. Analysis by Route of Administration

8.4. Benchmarking Big Pharma Players
8.4.1 Spider Web Analysis: AbbVie
8.4.2. Spider Web Analysis: Bayer
8.4.3. Spider Web Analysis: Bristol-Myers Squibb
8.4.4. Spider Web Analysis: Celgene
8.4.5. Spider Web Analysis: Eisai
8.4.6. Spider Web Analysis: Eli Lily
8.4.7. Spider Web Analysis: Genentech
8.4.8. Spider Web Analysis: GlaxoSmithKline
8.4.9. Spider Web Analysis: Merck
8.4.10. Spider Web Analysis: Novartis
8.4.11. Spider Web Analysis: Novo Nordisk
8.4.12. Spider Web Analysis: Pfizer
8.4.13. Spider Web Analysis: Roche
8.4.14. Spider Web Analysis: Takeda Pharmaceuticals

9 START-UP HEALTH INDEXING
9.1. Chapter Overview
9.2. Scope and Methodology
9.3. Benchmarking of Start-ups
9.3.1. Analysis by Portfolio Diversity
9.3.2. Analysis by Type of Molecule
9.3.3. Analysis by Phase of Development
9.3.4 Analysis by Therapeutic Area
9.3.5. Analysis by Funding Amount
9.3.6. Analysis by Number of Investors
9.3.7. Analysis by Type of Funding
9.3.8. Analysis by Partnership Activity
9.3.9. Analysis by Other Parameters
9.3.10. Analysis by Location of Headquarters
9.3.11. Start-up Health Indexing: Roots Analysis Perspective

10 PUBLICATION ANALYSIS
10.1. Chapter Overview
10.2. Scope and Methodology
10.3. STING Pathway Targeting Therapeutics: Recent Publications
10.3.1. Analysis by Type of Publication
10.3.2. Analysis by Type of Publication and Year
10.3.3. Analysis by Study Objective
10.3.4. Analysis by Popular Keywords
10.3.5. Analysis by Type of STING Modulator
10.3.6. Analysis by Target Pathway
10.3.7. Analysis by Therapeutic Area
10.3.8. Analysis by Type of STING Modulator and Therapeutic Area
10.3.9 Analysis by Type of Publisher
10.3.10. Leading Players: Analysis by Number of Publications
10.3.11. Leading Players: Geographical Analysis by Number of Publications
10.3.12. Analysis by First Author Organization
10.3.13. Key Journals: Analysis by Number of Publications

11 PARTNERSHIPS AND COLLABORATIONS
11.1. Chapter Overview
11.2. Partnership Models
11.3. STING Pathway Targeting Therapeutics: Recent Partnerships
11.3.1. Analysis by Year of Partnership
11.3.2. Analysis by Type of Partnership
11.3.3 Analysis by Type of STING Modulator
11.3.4. Analysis by Therapeutic Area
11.3.5. Analysis by Technology Platform
11.3.6. Most Active Players: Analysis by Number of Partnerships

11.3.7. Geographical Analysis
11.3.7.1 Most Active Players: Analysis by Number of partnerships
11.3.7.2. Intercontinental and Intracontinental Agreements

12. FUNDING AND INVESTMENT ANALYSIS
12.1. Chapter Overview
12.2. Types of Funding
12.3. STING Pathway Targeting Therapeutics: Recent Funding Instances
12.3.1. Analysis by Number of Funding Instances
12.3.2. Analysis by Amount Invested
12.3.3. Analysis by Type of Funding
12.3.4. Analysis by Type of STING Modulator
12.3.6. Analysis by Therapeutic Area
12.3.6 Analysis by Amount Invested and Type of STING Technology Platform
12.3.7. Most Active Players: Analysis by Number of Funding Instances
12.3.8. Most Active Investors: Analysis by Number of Funding Instances
12.3.9. Geographical Analysis by Amount Invested
12.4. Concluding Remarks

13. MARKET SIZING AND OPPORTUNITY ANALYSIS
13.1. Chapter Overview
13.2. Key Assumptions and Forecast Methodology
13.3. Global STING Pathway Targeting Technologies Market, 2020-2030
13.3.1. STING Pathway Targeting Technologies Market by Upfront Payments, 2020-2030
13.3.2. STING Pathway Targeting Technologies Market by Milestone Payments, 2020-2030
13.3.3. STING Pathway Targeting Technologies Market: Distribution by Type of STING Modulator
13.3.3.1. STING Pathway Targeting Technologies Market for Agonist, 2020-2030
13.3.3.2. STING Pathway Targeting Technologies Market for Antagonist, 2020-2030

13.3.4. STING Pathway Targeting Technologies Market: Distribution by Therapeutic Area
13.3.4.1. STING Pathway Targeting Technologies Market for Oncological Disorders, 2020-2030
13.3.4.2. STING Pathway Targeting Technologies Market for Inflammatory Disorders, 2020-2030
13.3.4.3. STING Pathway Targeting Technologies Market for Infectious Diseases, 2020-2030
13.3.4.4. STING Pathway Targeting Technologies Market for Other Therapeutic Areas, 2020-2030

13.3.5. STING Pathway Targeting Technologies Market: Distribution by Route of Administration
13.3.5.1. STING Pathway Targeting Technologies Market for Intratumoral Route, 2020-2030
13.3.5.2. STING Pathway Targeting Technologies Market for Intravenous Route, 2020-2030
13.3.5.3. STING Pathway Targeting Technologies Market for Oral Route, 2020-2030
13.3.5.4. STING Pathway Targeting Technologies Market for Subcutaneous Route, 2020-2030
13.3.5.5. STING Pathway Targeting Technologies Market for Other Routes, 2020-2030

13.3.6. STING Pathway Targeting Technologies Market: Distribution by Type of Molecule
13.3.6.1. STING Pathway Targeting Technologies Market for Non-Nucleotide, 2020-2030
13.3.6.2. STING Pathway Targeting Technologies Market for Cyclic Dinucleotide, 2020-2030
13.3.6.3. STING Pathway Targeting Technologies Market for Live Biotherapeutics, 2020-2030
13.3.6.4. STING Pathway Targeting Technologies Market for Oncolytic Viruses, 2020-2030
13.3.6.5. STING Pathway Targeting Technologies Market for Synthetic Peptides, 2020-2030
13.3.6.6. STING Pathway Targeting Technologies Market for Other Molecules, 2020-2030

13.3.7. STING Pathway Targeting Technologies Market: Distribution by Geography
13.3.7.1. STING Pathway Targeting Technologies Market in North America, 2020-2030
13.3.7.2. STING Pathway Targeting Technologies Market in Europe, 2020-2030
13.3.7.3. STING Pathway Targeting Technologies Market in Asia-Pacific, 2020-2030

14. EXECUTIVE INSIGHTS

15. CONCLUDING REMARKS
15.1. Chapter Overview
15.2. Key Takeaways

16. APPENDIX 1: TABULATED DATA

17. APPENDIX 2: LIST OF COMPANIES AND ORGANIZATIONS

Contact Details
Gaurav Chaudhary
+1 (415) 800 3415
[email protected]
-- END ---
Share Facebook Twitter
Print Friendly and PDF DisclaimerReport Abuse
Contact Email [email protected]
Issued By Roots Analysis
Country American Samoa
Categories Biotech , Health , Industry
Tags active pharmaceutical ingredient , healthcare , information services , market research , pharmaceutical , pharmaceutical product development inc , roots analysis , wellness and fitness
Last Updated January 8, 2021